
Software Evolution and
Refactoring

July 2011

Mehdi Amoui

1

Software Change: Importance

• Developing new software is costly and time
consuming
– It is insane to build a new system for every

required change in your software

• Reuse your software in another system

• Add some new features

• Fix some detected bugs

• …

2

Remember the Interpreter DP

3

and the Visitor DP

4

The Problem of Fitness for Future

• How can we design (re-design) and develop
software to reduce the cost of future
changes?
– Reduce the total number of changes

– Reduce the impact of each change

– Reduce costs and efforts

5

6

Another Example
(Form Last year Final Exam)

• Why is this implementation bad? How can you
improve it? Provide a list of improvements…

class Animal {
final int MAMMAL = 0, BIRD = 1, REPTILE = 2;
int myKind; // set in constructor
...
String getSkin() {

switch (myKind) {
case MAMMAL: return "hair";
case BIRD: return "feathers";
case REPTILE: return "scales";
default: return "integument";

}
}

}

7

Bad/Misused switch statements

• switch statements are very rare in properly
designed object-oriented code
– Therefore, a switch statement is a simple and easily

detected “bad smell”
– Of course, not all uses of switch are bad
– A switch statement should not be used to distinguish

between various kinds of object

• There are several well-defined solutions for this
case
– The simplest is the creation of subclasses

8

Example , improved
class Animal {

String getSkin() { return "integument"; }
}

class Mammal extends Animal {
String getSkin() { return "hair"; }

}

class Bird extends Animal {
String getSkin() { return "feathers"; }

}

class Reptile extends Animal {
String getSkin() { return "scales"; }

}

9

How is this an improvement?

• Adding a new animal type, such as Insect, does
not require revising and recompiling existing code

• Mammals, birds, and reptiles are likely to differ in
other ways, and we’ve already separated them
out (so we won’t need more switch statements)

• We’ve gotten rid of the flags we needed to tell
one kind of animal from another

• Basically, we’re now using Objects the way they
were meant to be used

10

Testing the Change
• As we improve the quality, we need to run JUnit tests to ensure

that we haven’t introduced errors

public void testGetSkin() {
assertEquals("hair", myMammal.getSkin());
assertEquals("feathers", myBird.getSkin());
assertEquals("scales", myReptile.getSkin());
assertEquals("integument", myAnimal.getSkin());

}

• This should work equally well with either implementation

Reasons for Software Change

• Corrective: Repair software faults
– Changing a system to correct deficiencies in the way meets its

requirements.

• Adaptive: Adapt software to a different operating environment
– Change for reuse in another system
– Changing a system so that it operates in a different environment

(computer, OS, etc.) from its initial implementation.

• Perfective: Add to or modify the system’s functionality
– Modifying the system to satisfy new requirements.
– Performance tuning

• Preventive: Improve the program structure
– Rewriting all or parts of the system to make it more efficient and

maintainable.
– Restructure code, “refactoring”, legacy wrapping, build interfaces

11

Distribution of maintenance activities

SE, Maintenance, Hans van Vliet, ©2008 12

corrective 21%

adaptive 25%

preventive 4%

perfective 50%

How to Reduce Maintenance Changes

• Higher quality ⇒ less (corrective) maintenance

• Anticipating changes ⇒ less (adaptive and perfective)
maintenance

• Better tuning to user needs ⇒ less (perfective)
maintenance

• Regularly perform preventive maintenance

• Less code ⇒ less maintenance (true?)

SE, Maintenance, Hans van Vliet, ©2008 13

Lemman’s Laws of Software Evolution

• Total 8 Laws
– Law 1: Software Change is inevitable
– Law 2: As software changes, it becomes more complex
– Law 3: Self-Regulation (Predict the change?)
– Law 4: Conservation of Organizational Stability
– Law 5: Conservation of Familiarity (Perceived Complexity)
– Law 6: Continuing Growth (Size of Software)
– Law 7: Declining Quality
– Law 8: Evolution processes are feedback systems

• Read more on Original Lemman’s paper (1974) and its
revisions.

14

Lemman’s Laws in a Nutshell

• Observations:
– Code Decay: (Most) useful software must evolve or die.
– Code Ageing: As a software system gets bigger, its resulting

complexity tends to limit its ability to grow.

• Advice:
– Need to manage complexity. (Sources of complexity?)
– Do periodic redesigns, and refinements.
– Treat software and its development process as a feedback

system.

15

What Makes software hard to
Maintain?

• Unstructured and complex code
– Low quality and poor design

• Insufficient domain knowledge
– Predict future demands, change requests, and …

• Insufficient and out of sync documentation
– How to update design documents?
– Naming Conversions
– Commenting

• Lack of regular preventive maintenance
• Maintaining someone else’s code

SE, Maintenance, Hans van Vliet, ©2008 16

Engineering Vs. Reengineering

• Engineering is a process of designing and
developing a new product.

• Reengineering is a process of understanding
and changing an existing product for various
reasons.
– Usually, you reengineer a system that you did not

developed initially.

17

Let’s Visualize it!

SE, Maintenance, Hans van Vliet, ©2008 18

Why do we care?!

• What should we learn in this (Architecture and
Design) course to reduce maintenance
problems?
– Quality design
– Common solutions are easier to maintain (Use

design patterns and architectural styles)
– Use CASE tools and common notations to keep

the design in sync with code
– Redesign (Preventive) to improve quality and

remove bad code smells!

19

Bad Smells in Code

• You code is decaying… It is getting old and
ugly… It stinks…

• The most common design problems result
from code that:
– Is duplicated
– Is unclear
– Is complicated

20

Some Code Smells

• Duplicate code
• Long method
• Conditional Complexity
• Data Class
• Solution Sprawl
• Switch statements
• Large class
• Lazy class

• Combinatorial Explosion
• Long Parameter List
• Shutgun Surgery

• Data Clumps

• Comments! (why?)

• And many more…

21

http://www.codinghorror.com/blog/2006/05/code-smells.html

http://www.codinghorror.com/blog/2006/05/code-smells.html�

Five Groups of Bad Code Smells

• The Bloaters: represents something that has grown so large that it
cannot be effectively handled.

• The Object-Orientation Abusers: they represent cases where the
solution does not fully exploit the possibilities of object-oriented
design.

• The Change Preventers: are smells that hinder changing or further
developing the software.

• The Dispensables: represent something unnecessary that should be
removed from the source code.

• The Couplers: coupling-related smells.

22

Bad Smells are the Indicators of
System Decay

• Frequent failures
• Overly complex structure
• Very large components
• Excessive resource requirements
• Deficient documentation
• High personnel turnover
• Different technologies in one system

23

How to remove bad smells?

• Via a reengineering process, three steps:
– Understanding
– Transforming
– Refining

• But we don’t want to change the program’s
behavior!

• So we need a set of transformations that are
guaranteed to preserve the behavior while they
can remove bad smells
– We call them “Refactorings”

24

25

Refactoring

• Refactoring is:
– restructuring (rearranging) code...

– ...in a series of small, semantics-preserving transformations (i.e. the
code keeps working)...

– ...in order to make the code easier to maintain and modify

• Refactoring is not just any old restructuring
– You need to keep the code working

– You need small steps that preserve semantics

– You need to have unit tests to prove the code works

• There are numerous well-known refactoring techniques
– You should be at least somewhat familiar with these before inventing

your own

Major Refactoring Catalogs

• Refactoring: Improving the Design of Existing
Code by Martin Fowler with contributions by
Kent Beck, John Brant, William Opdyke, and
Don Roberts, Addison-Wesley 1999.

• Refactoring to Patterns by Joshua Kerievsky,
Addison-Wesley 2004.

26

Primitive (Basic) Refactorings

• Behavior-preserving transformations:
– Move Method
– Rename Method
– Add Class
– Extract Method
– Pull up Method
– …

• Can be used as building blocks to create the so-called
composite refactorings.
– Example:

• MoveMethodsToVisitor
• Add Template Method

27

See:
www.refactoring.com

http://www.refactoring.com/�
http://www.refactoring.com/�

28

When Should We Refactor

• You should refactor:
– Any time that you see a better way to do things

• “Better” means making the code easier to understand and to
modify in the future

– You can do so without breaking the code
• Unit tests are essential for this

– You smell it! (If it stinks, change it)

• You should not refactor:
– Stable code (code that won’t ever need to change)
– Someone else’s code

• Unless you’ve inherited it (and now it’s yours)

What to refactor

Model (High-level)
• Not all code smells are design

smells!

• We need reverse engineering

• More abstract, less detail

• Can be visualized

• Can be hard to reflect the
changes to the code
(refinement)

• Can be automated (more
risky)

Code (Low-level)

• Hard to Understand

• Highly Detailed

• We can perform Unit testing
after refactorings

• Can be automated

29

Refactoring to Patterns

• Argue that design patterns can remove code
smells

• More high level
• Each refactoring to patterns is composed of a set

of Primitive refactorings
• Don’t Forget Testing after refactoring!

• 21 refactorings are introduced in:
– Refactoring to Patterns by Joshua Kerievsky, Addison-

Wesley 2004.

30

31

Catalog of Refactorings to Patterns

1. Replace Constructors with Creation methods
2. Encapsulate Classes with Factory
3. Introduce Polymorphic Creation with Factory Method
4. Replace Conditional Logic with Strategy
5. Form Template Method
6. Compose Method
7. Replace Implicit Tree with Composite
8. Encapsulate Composite with Builder
9. Move Accumulation to Collecting Parameter
10. Extract Composite, Replace one/many with Composite.
11. Replace Conditional Dispatcher with Command
12. Extract Adapter, Unify Interfaces with Adapter
13. Replace Type Code with Class

32

Catalog of Refactorings to Patterns

14. Replace State-Altering Conditionals with State

15. Introduce Null Object

16. Inline Singleton, Limit Instantiation with Singleton

17. Replace Hard-Coded Notifications with Observer

18. Move Embellishment to Decorator, Unify Interfaces, Extract Parameter

19. Move Creation Knowledge to Factory

20. Move Accumulation to Visitor

21. Replace Implicit Language with Interpreter

Are these patterns themselves?

33

Each refactoring has

• Name and Intent

• Gives an application example

• Discusses motivation

• Benefits and Liabilities

• Mechanics
– Specific things to do

• Presents detailed example

How to Use Refactorings

• Locate your Code/Design bad smells
• Look up for the list of refactorings to resolve

that smell.

• Example: Conditional Complexity
– Replace conditional logic with Strategy
– Move embellishment to Decorator
– Replace state-altering conditionals with State
– (Introduce Null Object)

34

How to use the refactorings

• Example: Duplicated Code
– Form Template Method

– Introduce polymorphic creation with Factory
Method

– (Chain Constructors)

– Extract composite

– Unify interfaces with Adapter

35

Example 2: Duplicated code

• If the same code fragment occurs in more than one
place within a single class, you can use Extract Method
– Turn the fragment into a method whose name explains the

purpose of the method
– Any local variables that the method requires can be passed

as parameters (if there aren’t too many of them!)
– If the method changes a local variable, see whether it

makes sense to return that as the value of the method
(possibly changing the name of the method to indicate
this)

– If the method changes two or more variables, you need
other refactorings to fix this problem

Example 2: How to remove Duplicate
Code

• If the same code fragment occurs in sibling classes, you
can use Extract Method in both classes, then use Pull
Up Method
– Use ExtractMethod in each class
– Be sure the code is identical
– If necessary, adjust the method signatures to be identical
– Copy the extracted method to the common superclass
– Delete one subclass method
– Compile and test
– Delete the other subclass method
– Compile and test

Example 2: How to remove Duplicate
Code II

• If the same code fragment occurs in unrelated
classes, you can use Extract Method in one class,
then:
– Use this class as a component in the other class, or

– Invoke the method from the other class, or

– Move the method to a third class and refer to it from
both of the original classes

• In any case, you need to decide where the
method makes most sense, and put it there

Example 2: A Hint

• If almost the same code fragment occurs in
sibling classes, use Extract Method to separate
the similar bits from the different bits, and use
Form Template Method

Intent of Template Method

• Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.

• Template Method lets subclasses redefine
certain steps of an algorithm without changing
the algorithm’s structure.

40

The Template Method

• Template Methods lead to an inverted control
structure
– A superclass calls methods in its subclass

• Template methods are so fundamental that
they can be found in almost every abstract
class

• Template Method uses inheritance
• A similar pattern, Strategy Pattern, uses

delegation rather than inheritance

Example 2: Big fish and little fish
• The scenario: “big fish” and “little fish” move

around in an “ocean”
– Fish move about randomly

– A big fish can move to where a little fish is (and
eat it)

– A little fish will not move to where a big fish is

BigFish
move()

Fish
<<abstract>>move()

LittleFish
move()

Example 2: The move() method

• General outline of the method:
– public void move() {

choose a random direction; // same for both
find the location in that direction; // same for both
check if it’s ok to move there; // different
if it’s ok, make the move; // same for both

}
• Solution:

– Extract the check on whether it’s ok to move
– In the Fish class, put the actual (template) move()

method
– Create an abstract okToMove() method in the Fish class
– Implement okToMove() in each subclass

The Fish refactoring

BigFish

move()

Fish

<<abstract>>move()

LittleFish

move()

BigFish

okToMove(locn):boolean

Fish

move()
<<abstract>>okToMove(locn):boolean

BigFish

okToMove(locn):boolean

• Note how this works:
When a BigFish tries
to move, it uses the
move() method in
Fish

• But the move()
method in Fish uses
the okToMove(locn)
method in BigFish

• And similarly for
LittleFish

Example 3: Replace Constructor with
Creation (Factory) Methods

• Problem: Constructors on a class make it hard
to decide which constructor to call during
development.

• Solution: Replace the constructors with
intention-revealing Creation (Factory)
Methods that return object instances .

45

Example 3: Class Diagram

46

Example 3: Mechanics (Step I)

• Find a client that calls a class’s constructor in
order to create a kind of instance.

• Apply Extract Method on the constructor call
to produce a public, static method.

• This new method is a creation method.
• Apply Move Method to move the creation

method to the class containing the chosen
constructor.

• Compile and test.

47

Example 3: Mechanics (Step II)

• Find all callers of the chosen constructor that
instantiate the same kind of instance as the
creation method.

• Update them to call the creation method.

• Compile and test.

48

Example 3: Mechanics (Step III)

• If the chosen constructor is chained to
another constructor:
– Make the creation method call the chained

constructor instead of the chosen constructor.
• Inline the constructor (Apply Inline method).

• Compile and Test.

49

Example 3: Mechanics (Final Step)

• Repeat steps 1-3 for every constructor on the
class that you’d like to turn into Creation
Method.

• If a constructor on the class has no callers
outside the class, make it non-public.

• Compile and test.

50

51

52

53

Example 3: Benefits and Liabilities

• Communicates what kinds of instances are
available better than constructors.

• Bypasses constructor limitations, such as the
inability to have two constructors with the same
number and type of arguments.

• Makes it easier to find unused creation code.

• - Makes creation nonstandard: some classes are
instantiated using new, while others use Creation
methods.

54

Tool Support

• There are several CASE tools to automate the
Code and Design Refactoring.
– Eclipse: has a build in refactoring that supports a

set of primitive refactorings.
– RefactorIT: supports a large set of refactorings.

Also detects some code smells by computing
design metrics. Eclipse plugin.

– Borland Together: Famous for its design level
refactorings to patterns, but expensive!

– Some tools exist for VisualStudio, too.

55

56

57

Terminology

• Evolution
• Maintenance
• Re-engineering
• Reverse Engineering
• Program Understanding
• Program Comprehension
• Forward Engineering
• Program Transformation
• Restructuring
• Design Recovery

• Modernization
• Retrofitting
• Renovation
• Migration
• Refactoring
• Refinement
• Replacement
• Redocumentation

• … and many more

58

Maintenance Vs. Evolution

• In many cases both terms are used interchangeably, or
together.

• Some researchers consider evolution as a subset of
maintenance, while some others define them vise versa

• Not very precise, but we can say that
– Software maintenance usually (but not necessarily addresses

bug fixes and minor enhancements (e.g. corrective, and
preventive).

– software evolution focuses on more extensive changes
(perfective, and adaptive).

59

	Software Evolution and Refactoring
	Software Change: Importance
	Remember the Interpreter DP
	and the Visitor DP
	The Problem of Fitness for Future
	Another Example �(Form Last year Final Exam)
	Bad/Misused switch statements
	Example , improved
	How is this an improvement?
	Testing the Change
	Reasons for Software Change
	Distribution of maintenance activities
	How to Reduce Maintenance Changes
	Lemman’s Laws of Software Evolution
	Lemman’s Laws in a Nutshell
	What Makes software hard to Maintain?
	Engineering Vs. Reengineering
	Let’s Visualize it!
	Why do we care?!
	Bad Smells in Code
	Some Code Smells
	Five Groups of Bad Code Smells
	Bad Smells are the Indicators of System Decay
	How to remove bad smells?
	Refactoring
	Major Refactoring Catalogs
	Primitive (Basic) Refactorings
	When Should We Refactor
	What to refactor
	Refactoring to Patterns
	Catalog of Refactorings to Patterns
	Catalog of Refactorings to Patterns
	Each refactoring has
	How to Use Refactorings
	How to use the refactorings
	Example 2: Duplicated code
	Example 2: How to remove Duplicate Code
	Example 2: How to remove Duplicate Code II
	Example 2: A Hint
	Intent of Template Method
	The Template Method
	Example 2: Big fish and little fish
	Example 2: The move() method
	The Fish refactoring
	Example 3: Replace Constructor with Creation (Factory) Methods
	Example 3: Class Diagram
	Example 3: Mechanics (Step I)
	Example 3: Mechanics (Step II)
	Example 3: Mechanics (Step III)
	Example 3: Mechanics (Final Step)
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Example 3: Benefits and Liabilities
	Tool Support
	Slide Number 56
	Slide Number 57
	Terminology
	Maintenance Vs. Evolution

